H= OBSERVE-AIl Leader in Al agents for customer experience

How to Deploy Al Agenis:
From Strategy to Scale

Chapter 1: What Are Al Agents and Why You Should Care

Chapter 2: Why Voice Is 10x Harder Than Chat

Chapter 3: 10 Questions Leaders Should Ask Before Deploying Al Agents
Chapter 4: Selecting the Right Use Cases (and How to Go About It)
Chapter 5: Frameworks, Tooling, and Integration Considerations
Chapter 6: Providing Certainty in a Probabilistic World

Chapter 7: Evaluating Al Agents at Scale

Chapter 8: Build vs. Buy — The Evergreen Question for Al Projects




H= OBSERVE-AIl Leader in Al agents for customer experience

..

-
‘ 2
- "N
-

With rising customer expectations, shrinking budgets, This guide is not just a primer on conversational Al. It is a
and aging legacy systems, the mandate is clear: strategic briefing for those ready to take on the challenge
modernize, automate, and improve outcomes—without of operationalizing agentic Al. It outlines how to deliver real
increasing headcount. Digital transformation has made automation, mitigate risk, and avoid the failure modes of
its way from slide decks to practical application. And prior Al deployments. Whether you're replacing outdated
sitting on the desk of every transformational leader is the systems, integrating across silos, or exploring ways to
decision to adopt Al Agents. maximize ROI from your Al investments, this guide is built
for you.

With that decision comes the big three questions of

“where,” "how,” and “why.” There are many potential Let’s get started.
areas ripe for agentic Al, but none better suited for

immediate impact and tangible return on investment than

customer support.



H= OBSERVE-Al

Leader in Al agents for customer experience

What Are Al Agents and Why
Should You Care

Most enterprises have already tested conversational Al—chatbots,

NLU-driven IVRs, or digital assistants. The results were often mixed:

brittle logic trees, poor escalation handling, and shallow
integrations that failed to resolve customer issues.

Al Agents represent the next step. Built on large language models
(LLMs) and engineered for enterprise-grade reliability, they move
beyond intent recognition to deliver outcomes. They execute tasks
across backend systems, manage multi-turn dialogues with context
and memory, and operate within clear governance frameworks. The
shift is from answering questions to completing work reliably,
securely, and at scale.

Why It Matters to Technology and Transformation Leaders

Executives charged with modernization and efficiency need
automation that goes deeper than call deflection. Al Agents deliver
on both fronts:

o Extend Al into Voice: Historically underserved by automation,
voice is finally ready for intelligent treatment.

o Drive Measurable ROI: With containment rates often reaching
60%, they alleviate staffing pressure.

» Elevate Customer Experience: Conversations are fast,
personalized, and consistent—no call queues, no long menus.

» Enable Observability and Insight: Every exchange is logged,
transcribed, and scored for compliance and performance.

e Ensure Governance: Enterprise APIs, policy guardrails, and
AutoQA reinforce security and reliability.

Where legacy IVRs route and chatbots answer FAQs, Al Agents
resolve outcomes. They can authenticate users, check eligibility,
issue refunds, update records, or schedule appointments using
natural language combined with secure system integrations.

Enterprise-Ready by Design

Al Agents are not proof-of-concept projects. They are
already running at scale in healthcare, insurance, financial
services, and retail. They integrate directly with CRMs,
claims platforms, billing systems, and identity
management tools through secure APIs.

Key design principles include:

o Composable Architecture: Modular NLU/NLG, task
orchestration, call control, knowledge retrieval, and
feedback loops.

e Enterprise Integration: Prebuilt connectors for CCaas,
CRMs, and ticketing systems.

e Observability: Real-time logs, QA scores, containment
metrics, and escalation insights.

o Controlled Customization: Business users can
configure flows without code, while IT and governance
teams enforce policies.

This dual model gives business teams agility while
preserving oversight for technical and compliance leaders.

Why the Timing Is Right

Several forces have converged to make Al Agents a strategic
priority:

e LLMs now support fluent, dynamic dialogue and reasoning.

e Cloud migration has made backend systems APl-accessible
and composable.

e Labor pressures and attrition require new ways to gain
efficiency.

o Customer expectations demand real-time service, especially
on voice.

Despite these conditions, most enterprises still struggle to extract
ROI from Al initiatives. A thoughtful approach to Al Agents
changes this equation. They offer a proven way to translate
experimentation into measurable outcomes, tying automation
directly to transformation priorities.



H= OBSERVE-Al

Leader in Al agents for customer experience

., Why Voice Is 10x Harder
Than Chat

Chatbots have set expectations for automation in digital channels.
They work reasonably well when users type short, structured
requests. Voice is different. It is the most emotional and high-stakes
channel, and also the hardest to automate at scale.

Voice demands more than just natural language processing. It
requires reasoning in real time, accurate transcription,
disambiguation of messy input, memory across multi-turn
conversations, and interoperability with fragmented telephony
systems. Each of these introduces complexity that makes voice
automation far more challenging than chat.

1. Real-Time Reasoning with Low Latency

In chat, users tolerate a short pause before a reply. In voice, that
pause breaks the experience. The system must listen, process, and
respond in milliseconds. Achieving this requires not just fast model
performance but orchestration layers that reduce latency while
maintaining accuracy.

2. ASR Transcription Challenges

Automatic Speech Recognition (ASR) struggles with real-world
conditions: accents, background noise, interruptions, and emotional
tones. In voice channels, transcription errors compound quickly—
one missed word can derail a conversation. High-performance
systems must be tuned for domain-specific vocabularies,
acronyms, and compliance terminology.

3. Intent Disambiguation in Free-Form Speech

Voice input is messy. Customers don’t speak the way they type.
They ramble, change topics, or ask ambiguous questions. Unlike
chat, where typed input is easier to parse, voice requires advanced
NLU and contextual memory to extract meaning. Without it,
containment drops and escalation rates rise.

4. Multi-Turn Memory and Conversational Complexity

In chat, context is always visible in the transcript. In voice, the
system must actively track and recall it. Customers shift mid-
sentence (“Actually, make that Tuesday instead”), add conditions,
or revisit earlier parts of the conversation. Handling this reliably
requires strong memory, state management, and guardrails to
prevent drift.

5. Telephony Interoperability Across Legacy and Modern Systems
Voice automation doesn’t run in a clean, digital environment. It must
work across fragmented telephony infrastructure: PBXs, SIP trunks,
CCaasS platforms, call routing engines, session management, and
carrier quirks like DTMF fallback. Each integration adds latency,
complexity, and compliance considerations.

Why This Matters for Leaders

Voice is where automation delivers the greatest ROI, but it is also
where shortcuts fail the fastest. Leaders evaluating Al Agents need to
recognize that voice is not simply “chat with speech recognition.” It is
an environment with higher technical demands, operational
complexity, and customer sensitivity. Deployments succeed only when
built with architectures, integrations, and governance designed
specifically for voice.

The Enterprise Contact Center Context

Phone support is a mature domain. Enterprises already rely on IVRs,
ACDs, hard and fast defined routing rules for subject matter experts,
and well-established SOPs to manage contact flows. These systems
are embedded into the daily operations of the contact center, with
defined order, process, and procedure that agents and supervisors
depend on. Introducing Al Agents into this environment requires more
than just technical execution. It demands careful design to ensure the
Al integrates smoothly with legacy systems and established
workflows, expanding what already works rather than disrupting it.
Later chapters will address this in depth, but the key point here is that
succeeding with voice automation means solving for both the
technical challenges of speech and the operational realities of the
contact center.



H= OBSERVE-Al

Leader in Al agents for customer experience

2 10 Questions Leaders Should
Ask Before Deploying Al Agents

Deploying Al Agents is not the same as buying traditional software.
It's a transformation initiative that touches technology, operations,
compliance, and customer experience all at once. Leaders need a
structured way to separate hype from substance and to build
alignment across the organization before the first pilot.

These ten questions serve as a practical framework for evaluating
readiness, pressure-testing vendor claims, and building a
sustainable adoption strategy.

1. What Problem Are We Solving?

The first question cuts through hype. What is the business reason
for adopting Al Agents? Is it about reducing handle time, eliminating
hold queues, scaling without adding headcount, or expanding into
247 service? For some organizations, the purpose might be
operational efficiency. For others, it could be improving compliance
visibility, enriching customer data, or opening new channels of
engagement.

This question forces clarity: Al Agents are not an innovation project.
They should exist to solve a defined problem that leadership can
rally around and measure against.

2. How Do We Identify the Right Use Cases, and What'’s the
Growth Strategy?

Choosing initial use cases is not about “where can we try this,” but
“where will it make a measurable difference.” High-volume,
repeatable workflows are often the best place to start. Yet leaders
must also plan beyond the first deployment.

Unlike legacy software, agentic Al is not static. It learns, grows, and
expands. That means edge cases will surface, new opportunities
will emerge, and refinements will be required over time. Leaders
need a process to:

 ldentify where Al Agents can add value today

» Define a phased rollout plan (queue by queue, use case by use
case)

e Build in continuous refinement as new interactions uncover gaps

The measure of success is not just the first deployment, but
whether the organization is positioned to scale and evolve with the
technology.

3. What Core Systems and Processes Are Required?

Al Agents cannot operate in isolation. They must integrate with CRMs,
claims platforms, billing systems, authentication services, and
telephony. Leaders must understand:

o Which systems are required to support the chosen use cases

o Whether those systems provide real-time APIs or require
workarounds

e The existing SOPs and ownership tied to those systems

This is as much about organizational readiness as it is technical
feasibility. If processes are undocumented, owners are unclear, or
integrations are outdated, those will become blockers long before the
Al Agent does.

4. How Will We Measure Success Over Time?

Metrics cannot be an afterthought. They must reflect both immediate
deployment goals and long-term business impact. Leaders should
define:

e |nitial success metrics (containment, AHT, CSAT, compliance
adherence)

o Operational metrics over the first six to twelve months (escalation
precision, QA coverage, error reduction)

o Strategic outcomes over multiple quarters or years (reduced hiring
pressure, expanded coverage, data-driven insights)

This ensures alignment between day-one outcomes and longer-term
transformation. The question isn't just “what’s the containment rate,”
but “how will this change the way we run customer operations in one
year, three years, or five years?”

5. How Does This Fit Into Current Operations?

Voice is a mature, well-established channel. Enterprises already rely
on IVRs, ACDs, intelligent routing, and standard operating procedures
to manage order and flow. Al Agents must fit into this world rather
than disrupt it blindly.

Leaders should ask:

» Where does the Al Agent sit in the flow—front-end triage, routine
task handling, or intelligent routing?

e How does this change the work of human agents? For example, if
Al handles repetitive FAQs, human agents will need to be upskilled
to manage higher-complexity conversations.

» How does this impact reporting, QA processes, and supervisor
oversight?

The operational context is just as important as the technical one.
Without a plan for integration into daily workflows, deployments stall.



H= OBSERVE-Al

Leader in Al agents for customer experience

6. Who Needs to Be Involved?

Ownership is not enough. Al Agent adoption requires a cross-
functional team. Leaders should think in terms of a RACI model
(Responsible, Accountable, Consulted, Informed). Typical
stakeholders include:

e Customer Experience leaders: define customer-facing flows and
quality standards

e IT and Al teams: manage integrations, infrastructure, and model
oversight

e Operations managers: ensure continuity of workforce planning
and agent training

 Compliance and legal: validate handling of sensitive data and
regulated workflows

e Marketing/Brand: ensure tone, personality, and alignment with
brand promise

e Product owners: provide feedback loops for system
improvements and roadmap alignment

The right mix of voices ensures deployments don’t become siloed
projects or technical science experiments.

7. What Is the Continuous Feedback Loop?
Al Agents are not “set it and forget it.” Leaders must design

ongoing feedback mechanisms that capture failures, edge cases,
and new opportunities. This includes:

Reviewing escalations and fallback scenarios

Validating prompts and updating knowledge sources

Ensuring responses remain fact-based and grounded

Using AutoQA and analytics to identify drift or compliance risks

The question is not whether the system will need tuning, but how
structured and repeatable that tuning process will be.

8. How Do We Build Trust at Scale?
Trust is not only about compliance, it's about visibility and control.
Leaders should ensure they can:

Audit every conversation and decision path

ldentify when guardrails or policy triggers are hit

Drill down into reports to understand performance and risk
Prove that hallucinations or off-policy responses are detected
and corrected

Without transparency, even technically successful deployments will
struggle to gain organizational trust.

9. Do We Have the Tools to Refine at Scale?

Refinement goes beyond no-code interfaces. A small prompt update
to solve one problem may spawn a hundred other problems, and if the
Al Agent is handling real customer calls or chats then you need
assurance the system is hardened before any edits are pushed live.
These things to deliver confidence includes the ability to:

Update prompts and escalation rules at pace
Push changes across multiple queues or regions
Validate improvements before production
Manage version control across agents

This ensures that the system is not only agile but also controlled—
capable of supporting continuous iteration without creating risk.

10. What Is the Rollout Plan?

Al Agents require phased adoption. Leaders must set realistic
timelines for:

Piloting in one queue or with one use case
Monitoring performance and making adjustments over 30—-60 days
Expanding in 6-, 12-, and 24-month stages
Building toward enterprise coverage while maintaining governance

This avoids the “big bang” failure mode and ensures the program
grows alongside organizational maturity.

A Note on Asking the Right Questions

The most common reason Al projects stall is not technology, but a
lack of structure. These ten questions give leaders a framework to
evaluate readiness, design for scale, and demand substance from
vendors. When answered honestly, they not only reduce risk but also
create alignment across every stakeholder who depends on the
customer experience.



H= OBSERVE-Al

Leader in Al agents for customer experience

., Selecting the Right Use Cases
(and How to Go About It)

Organizations that adopt Al Agents typically fall into two categories.

The first group enters the process with a defined objective, often
shaped by executive mandate, operational pain points, or cost
pressures. The second group recognizes the potential of
automation but requires guidance to determine where to begin.

In either case, the path forward is the same: rigorously evaluating
and selecting use cases through a structured process. This
discipline ensures automation is applied where it can deliver
measurable outcomes, while avoiding deployments that risk
inefficiency, customer dissatisfaction, or compliance concerns.

Step 1: Analyze Customer Conversations at Scale

The most reliable foundation for use case selection is empirical
data from customer interactions. Contact center call recordings,
transcripts, and associated metadata should be analyzed across a
statistically significant sample. This analysis enables categorization
of interactions into tiers of complexity (L1-L4) and provides insight
into:

Frequency of specific intents

Volume distribution across tiers
Complexity of workflows involved
Degree of emotional sensitivity
Escalation patterns and failure modes

Intent categorization serves two purposes. It validates existing
hypotheses about high-priority workflows, and it uncovers
previously overlooked opportunities where automation may add
value.

Step 2: Assess Automation Feasibility

Not every intent identified through conversation analysis is a
suitable automation candidate. Leaders must evaluate “automation
ability” by applying a rubric that considers:

e Volume and cost impact: Frequency of interaction and cost per
call

e Error tolerance: Risk associated with incorrect outcomes

e Decision complexity: Number of branching steps or
dependencies

e Multi-turn variability: Likelihood of conversational drift or re-
direction

» Contextual requirements: Need for real-time data retrieval
across systems

o Emotional sensitivity: Situations requiring empathy or human
judgment

For example, updating payment information is technically
straightforward, but if tied to a late bill for a medical procedure, the
underlying context introduces emotional sensitivity that requires
careful handling. Similarly, “first notice of loss” in insurance can be
structured for data capture, but traumatic events demand a human
presence to provide empathy.

This evaluation ensures automation is applied responsibly, avoiding
scenarios where technical feasibility does not equate to acceptable
customer experience.

Step 3: Classify Use Cases Along the Automation Spectrum

Following the feasibility assessment, each use case should be
categorized according to the appropriate automation model:

o Automate: Al Agent contains the workflow end-to-end with no
human intervention.

o Augment: Al Agent performs sub-tasks such as information
gathering, intent verification, or routing, then transfers to a human
agent for resolution.

o Assist: Al Agent supports human agents through real-time
prompts, next-best-action guidance, or intelligent routing to
specialized resources.

This spectrum prevents binary decision-making and allows
automation to be deployed with precision, aligning capability with
business and customer requirements.

Step 4: Establish a Roadmap for Deployment and Growth

Al Agents are not static systems. Unlike legacy software, they learn,
expand, and require continuous refinement as new edge cases
emerge. Leaders should define a roadmap that recognizes this
evolutionary trajectory:

e Prove: Deploy in a high-volume, low-risk workflow to demonstrate
ROl and validate technical performance.

e Expand: Scale into adjacent workflows informed by real-world
interaction data and iterative improvements.

o Scale: Extend automation across lines of business, languages, or
geographies, supported by governance and quality frameworks.

This phased approach ensures early value capture while creating the
conditions for sustainable long-term transformation.

Selecting the right use cases is not a matter of intuition or
expedience. It requires disciplined analysis of customer interactions,
rigorous evaluation of automation feasibility, and a structured
roadmap for phased adoption. By approaching use case selection
holistically—balancing technical capability, operational context, and
customer sensitivity—organizations create a foundation where Al
Agents can deliver measurable ROl while preserving trust and control.



H= OBSERVE-Al

Leader in Al agents for customer experience

Frameworks, Tooling, and
Integration Considerations

From Demos to Deployment

It has never been easier to spin up an Al agent demo. With today'’s
foundation models and telephony infrastructure, anyone can
showcase a system that answers calls, recognizes intents, and
simulates basic resolutions. Yet as engineering teams know, what
looks compelling in a controlled demo often breaks under
production conditions.

This is not a model problem. It is an infrastructure problem. Moving
from a proof of concept to an enterprise-grade deployment requires
more than fluent dialogue—it requires orchestration, integration,
and governance. Al agents must be elevated from conversational
front ends to operational systems capable of managing workflows
across complex enterprise stacks.

What Orchestration Really Means

Workflow orchestration refers to the automated execution of
structured processes in response to a trigger. In the context of Al
agents, that trigger may be a customer request, a webhook, or a
system state change. Each workflow is designed around a specific
outcome: booking an appointment, processing a refund, resetting a
password, checking eligibility, or escalating to a human.

The distinction between orchestration and ad hoc scripting is
critical. Prompt chaining or basic wrappers around LLMs may
simulate action, but they lack structure, error handling, and
observability. Orchestration, by contrast, is declarative. It specifies
what should happen, under what conditions, and with safeguards
built in:

e Every step is logged for transparency.

 Failures are anticipated, with retries, compensations, and
escalation paths defined in advance.

e Control logic is separated from business logic, making systems
modular, auditable, and easier to maintain over time.

In practice, this transforms a conversational intent—"I'd like to
cancel my policy”—into a deterministic, observable chain of
system-level actions that completes the task reliably.

The Role of Integrations

If orchestration defines how processes execute, integrations define
where they execute. Al agents cannot operate in isolation. They
require safe, reliable access into enterprise systems such as CRMs,
billing platforms, identity management services, and workflow
engines.

Integrations act as the abstraction layer between automation logic
and operational systems. Robust integrations include:

Authentication and access controls

Standardized schemas for requests and responses
Observability hooks for monitoring success and failure
Built-in error handling for resilience

Without well-structured integrations, Al agents remain limited to
intent recognition. They can identify what the customer wants, but
they cannot act. Worse, brittle integrations—built with hardcoded
credentials or unmonitored scripts—create reliability and security
risks.

Consider appointment scheduling. In a demo, an Al agent might
book a slot via a single API call. In production, however, the process
is far more complex: authenticate the user, confirm eligibility, query
availability, select times, book the appointment, and trigger
confirmation workflows, all while maintaining a natural language
dialogue. Orchestration, supported by structured integrations,
makes this sequence reliable, auditable, and resilient.

Why Al Agents Need Orchestration

A conversational system without orchestration is fragile. One
broken API call, one malformed payload, or one unhandled
exception can collapse the customer experience. The result is ghost
errors, dropped intents, and failed automations with no clear root
cause.

With orchestration, every downstream action is structured, logged,
and recoverable. Agents operate through workflows that define
conditionals, fallbacks, approvals, and exception handling.
Outcomes are traceable back to the original intent, and because
workflows are governed and version-controlled, changes can be
deployed confidently with rollback options.

This is how Al agents progress from controlled demos to trusted
production systems. Orchestration provides the scaffolding that
allows them to function as reliable operational workers rather than
probabilistic experiments.

A New Layer in the Stack

Orchestration sits between conversational intent and enterprise
systems of record, serving as the connective tissue that translates
customer needs into business outcomes.

When an agent identifies an intent, it selects the corresponding
workflow. That workflow executes a stateful sequence: querying
databases, invoking APIs, updating records, handling conditional
logic, and preserving conversational continuity. All actions are
tracked in real time, with full telemetry available for review.

Workflows can be authored through low- or no-code interfaces and
triggered by natural language prompts. They integrate with both
modern platforms and legacy infrastructure, ensuring Al agents can
operate across diverse environments. Crucially, workflows are
aware of the agent’s context (via Model Context Protocol), allowing
dynamic adaptation mid-process and seamless continuity across
multi-turn or multi-channel experiences.



H= OBSERVE-Al

Leader in Al agents for customer experience

Observability, Resilience, and Recovery

Enterprise adoption requires more than functionality; it requires
transparency and resilience. A modern orchestration system must
provide:

e Structured observability: Detailed execution traces for every
workflow run, including successful actions, retries, fallbacks, and
escalations.

e Resilience mechanisms: Retries with exponential backoff, dead-
letter queues, fallback paths, and policy-driven escalations.

o Seamless human intervention: Context-preserving handoffs
when human oversight is required.

This ensures that failures are not silent, errors are recoverable, and
every action can be audited. It is this level of robustness that
distinguishes orchestration from brittle scripting.

Building Sustainable Automation

With orchestration in place, every process has structure, every
integration is reusable, and every failure path is defined. Teams can
collaborate on workflows, enforce consistent patterns, and adapt as
underlying systems evolve. Because orchestration abstracts
automation logic from system dependencies, organizations can
swap platforms—migrating from Zendesk to Salesforce, or from one
scheduler to another—without rewriting the automation itself.

This adaptability is what makes orchestration an enterprise
capability, not a demo feature. Al agents gain the reliability,
flexibility, and governance required to execute real operational
workloads, from authentication and transactions to escalations and
reporting.

Workflow orchestration transforms Al agents from conversational
interfaces into production-grade systems of record. It provides the
execution layer, observability, and resilience needed for enterprise
adoption. With this foundation, Al agents can reliably handle real
tasks, integrate across systems, and operate as part of a coherent,
governed automation strategy.

This is the missing layer between intent recognition and business
outcomes—the capability that turns Al from an impressive demo
into a trusted operational asset.



H= OBSERVE-Al

Leader in Al agents for customer experience

s Providing Certainty in a
Probabilistic World

The Risk of Probabilistic Systems at Scale

When Al agents move from prototype to production, their
probabilistic nature creates real risks. Prompts that worked in
testing often fail in unexpected ways when exposed to tens of
thousands of live interactions. Even a 1% error rate at scale means
hundreds of broken experiences every day.

Examples include:
e A bank agent skips caller authentication and issues a
replacement card.
e A healthcare agent routes a patient to billing without checking

eligibility.

The conversations may sound natural, but without guardrails, they
create compliance and trust failures.

Why Prompts Alone Fall Short

Large language models are inherently probabilistic. Even carefully

engineered prompts cannot ensure consistent behavior. They may:

Miss authentication or disclosure steps
Execute tasks in the wrong sequence
Skip compliance checks

Branch into unintended paths

This flexibility is valuable in demos, but in regulated, high-volume
environments, it becomes a liability.

Workflow Governance as the Control Layer

To achieve reliability, enterprises need a layer of workflow

governance that enforces structure and sequence without breaking

natural conversation.

Instead of one large prompt, “hoping” the model remembers,
governance enforces a deterministic chain:

1. Authenticate caller - mandatory
2. Perform the requested action > only after authentication
3. Confirm outcome and log - for auditability

Each step is modular, testable, and tied to business rules.
Customers experience a smooth conversation. Organizations gain
predictability, compliance, and resilience.

Practical Example
Take an insurance claim:

o Without governance: The agent begins filing after collecting a
policy number, possibly bypassing eligibility checks.

e With governance: The system enforces identity verification, policy
validation, and claim-type confirmation before any filing occurs.

The flow feels seamless to the customer. The enterprise avoids
compliance issues, invalid claims, and costly remediation.

Key Capabilities Leaders Should Expect

e Transparent Flow Design: Clear visibility into how steps connect
and depend on each other.

o Conditional Routing: Dynamic branching based on real-time data
and context.

e Granular Testing: Ability to validate or update single steps without
rebuilding entire flows.

e Compliance Enforcement: Required steps (like authentication)
cannot be bypassed.

Why This Matters
At enterprise scale:

o Compliance must be absolute — healthcare, finance, and
government environments cannot tolerate skipped steps.

» Consistency is critical — predictable flows reduce operational risk.

o Change is constant — leaders need systems that allow quick,
controlled updates without destabilizing production.

Without workflow governance, Al agents remain fragile and prone to
error. With it, they become predictable and auditable, making them
safe to deploy in sensitive, high-volume environments.



H= OBSERVE-Al

Leader in Al agents for customer experience

7 Evaluating Al Agents at Scale

Pilots are safe. Production is not. Once an agent is handling
thousands of conversations a day, the evaluation problem changes.
You are no longer testing a model. You are operating a distributed
system that talks to people, calls tools, and takes actions that
affect customers and compliance. That requires full-coverage
measurement, not periodic spot checks.

Why random sampling misses the real issues

Reviewing a thin slice of calls with human evaluators can catch
obvious failures, but it will not reveal systemic problems. A one
percent miss on authentication, a schema change that breaks a tool
in a narrow path, or a disclosure that is skipped only when a certain
slot is empty will hide inside the ninety-nine percent you did not
review. At scale, those “rare” paths happen every day. You need an
evaluation on every interaction with drill-downs to the exact turn
and tool call where things diverged.

Evaluate across three dimensions, not one

Leaders often start and end with containment. That is necessary
but incomplete. You need three complementary lenses.

Technical execution
Did the agent complete the goal, call tools reliably, and meet
latency targets?

e Goal completion rate shows end-to-end success. Sudden drops
often mean a tool or mapping broke.

e Containment rate is useful, but track it by task type and policy.
Some flows should escalate by design.

» Abandonment rate highlights friction points such as unavailable
data, misunderstanding, or slow replies. Pair with transcript drill-
downs.

e Latency and p95 matter, especially on voice. Long tails usually
come from backend lookups. Instrument them.

e Tool success rate and time per call: watch timeouts, auth errors,
invalid payloads. Define safe fallbacks and retries.

o Escalation handling must preserve context so customers do not
repeat themselves. Measure time to human and handoff quality.

o Guardrail adherence monitors policy, privacy, and disclosure
rules. Treat breaches as first-class signals, not a footnote.

Conversational quality

Does it sound natural, maintain context, and resolve ambiguity with
the right clarifying questions?

e Speech naturalness on voice: pacing, pauses, emphasis, and tone.
Automate evaluation rather than relying only on manual listening.

o Contextual understanding across turns and tool results. Avoid
repeat questions and be precise when referring back.

e Follow-up and clarification prompts should reduce ambiguity
instead of guessing.

Customer experience

Did the experience build trust or frustration, independent of task
success?

» Satisfaction signals from language and outcome, not only post-call
surveys. Compare goal completion with perceived helpfulness.

e Frustration index from interruptions, corrective phrases, repeated
negatives, and drops. Use it to trigger live saves.

o Real-time alerts and fallbacks for repeated API failures, loops, or
negative sentiment. Escalate before it becomes a complaint.

Guardrails as controls, not error counters

Guardrails only help if they drive behavior at runtime and expose what
happened afterward.

Detect

Instrument every rule: authentication steps, disclosures, data access
limits, escalation policies. Record the rule, the condition, and the
exact turn that triggered it.

Correct

Provide immediate in-flow correction. If a disclosure is missed, insert
it before proceeding. If a tool returns an unexpected type, route to a
safe path and inform the user without leaking system detail.

Escalate

Create policies that auto-escalate when the same guardrail triggers
repeatedly within a session or across sessions. Examples: three failed
verifications in five minutes, two disclosure insertions in one call, or
repeated policy violations on a new release. Tie these to paging or
queueing rules for human review.

Expose

Log guardrail hits with full context: prompt state, tool inputs and
outputs, decision taken, and user-visible message. Make them
searchable and trendable. This is how you achieve auditability and
true operational oversight.

10



H= OBSERVE-Al

Leader in Al agents for customer experience

Build a continuous improvement loop, not a queue of tickets

Treat every conversation as training data for your operations.

1. Reporting and alerts
Unify completion, containment, latency, tool failures,
satisfaction, and frustration into one view. Set thresholds for
alerting and on-call.

2. Action and ownership

Route issues to the right owner. Prompt updates go to
conversation designers, tool failures to integration teams, and
policy items to compliance. Changes should include before-after
examples from real transcripts.

3. Iterate and validate

Regression test targeted fixes, then simulate edge cases before
promoting. Track version histories and rollback plans. Monitor
post-deploy until metrics stabilize.

What “confidence at scale” looks like

A credible evaluation system gives you end-to-end visibility: what
was said, what was done, and why. It correlates customer
outcomes back to prompts, tools, and rules so you can separate
model issues from integration defects or policy misconfigurations. It
covers one hundred percent of traffic, not a sample, and it gives
compliance teams auditable trails without manual hunts through
logs. Skipping this shows up later as repeat contacts, churn, SLA
breaches, and brand damage.

Anti-patterns to avoid

e Sampling only edge cases. You will miss systemic
defects that live in the long tail.

e Vanity rollups. Interaction counts and average scores
without drill-downs hide root causes.

* QA by checkbox. Measuring only containment or CSAT
will trade off compliance or tool reliability.

e Opaque fallbacks. Silent failures that transfer users
without context make humans repeat the whole
workflow.

A practical checklist for technical evaluators
Use this during reviews and post-launch health checks.

Coverage
o Evaluate 100% of interactions with turn-level logs and tool traces.
o Store guardrail events with context and outcomes.

Metrics
o Track goal completion, containment per task, abandonment,
latency p95, tool success, and handoff quality.
e Score speech naturalness, context carry-over, and clarification
quality.
e Monitor satisfaction and frustration signals in real time.

Controls
o Enforce required steps with runtime correction and auto-escalation
policies.
e Preserve context on every escalation to a human and measure
response times.

Process
e Central dashboard with alerts tied to ownership.
e Regression tests and version control for prompts, flows, and tools.
e Monthly review across Ops, IT, Product, and Compliance with
data-driven actions.

Bottom line: Evaluating Al agents at scale is an operations discipline.
Success comes from full-coverage telemetry, active guardrails, and a
steady feedback loop that links customer outcomes to system
behavior. Do this well and you can expand automation with
confidence, not hope.

1



H= OBSERVE-Al

Leader in Al agents for customer experience

Build vs. Buy — The Evergreen
Question for Al Projects

Every enterprise exploring Al agents eventually faces the
same question: should we assemble this ourselves, or
partner with a vendor? On the surface, building in-house
appears attractive. Your teams know your systems, your
security requirements, and your workflows. With open-
source models, developer APls, and cloud infrastructure
readily available, the building blocks are there. But what
looks feasible in a prototype can quickly become fragile
and expensive at scale.

Realities of DIY

Every technical leader has great people on their team who can
build, and the components for Al agents are widely available. The
question isn't whether you can assemble something that works—
it's whether you can make it stable, sustainable, and resilient
enough to run in production at scale. When organizations attempt
to build Al agents internally, three costs usually surface:

Key architectural components include:

e Engineering drag. Al agents are not just conversational models;
they are systems that need orchestration, integration,
observability, and governance. Maintaining connectors, handling
tool failures, and instrumenting guardrails can consume more
engineering capacity than anticipated. What starts as a side
project can evolve into a perpetual backlog.

o Operational risk. A patchwork of scripts, APls, and services is
prone to failure. One unhandled exception or expired credential
can silently break a workflow. Without enterprise-grade
monitoring, those failures surface only when customers
complain.

o Compliance exposure. Handling voice and chat interactions
means handling personal and financial data. Without structured
audit trails, runtime guardrails, and enforced escalation paths,
DIY systems create blind spots for compliance officers and
regulators.

Why “Assembling” # Building

A common anti-pattern is not a full DIY build, but piecing together
multiple tools and wrappers: an ASR provider here, a prompt-
engineering layer there, plus an open-source orchestrator and
some in-house connectors. It works for demos, but these stitched-
together stacks tend to share three weaknesses:

 Inconsistent reliability. Different services fail in different ways, and
error handling is rarely unified.

» Limited transparency. Logs are scattered, making it difficult to
reconstruct what happened when something breaks.

» Scaling friction. Each new use case multiplies the integration
complexity, with no single layer designed for lifecycle
management.

This is where many “homegrown” projects stall: they solve the first
problem, but lack the scaffolding to handle the second and third.

Lessons from Failed Builds

Across industries, failed Al agent builds follow a familiar pattern. A
proof-of-concept works in a sandbox. A pilot with a few thousand
calls or chats looks promising. Then adoption hits scale, and brittle
integrations, untested edge cases, and missing guardrails lead to
mounting incidents. The project either gets abandoned or consumes
escalating internal resources just to keep afloat.

The lesson: conversational Al is not a single problem. It is a collection
of technical, operational, and compliance challenges that require
infrastructure-level solutions.

Making the Decision

The build vs. buy decision is not binary. Many organizations will
continue to blend internal capabilities with vendor platforms. What
matters is clarity on:

 Where your team wants to differentiate. Building custom
workflows or domain-specific models may make sense. Building
commodity infrastructure like ASR integration, observability, or
escalation handling rarely does.

» Total cost of ownership. Account for not only licensing but also
staffing, training, monitoring, and compliance reporting.

o Time-to-value. A pilot that takes months to harden before it can
safely scale loses competitive ground.

e Sustainability. Can you update, test, and govern these systems
reliably for years, not months?

Bottom Line

Al agents are no longer experiments. They are becoming production
systems that handle sensitive customer interactions and trigger core
business workflows. Piecing solutions together may demonstrate
what'’s possible, but it rarely sustains what’s required. Leaders
evaluating this decision should weigh not just the cost of software,
but the long-term risks of fragility, operational drag, and compliance
exposure.

12



H= OBSERVE-Al Leader in Al agents for customer experience

Final Thoughts — Al Agents Taken together, these four elements define what it means to treat Al
asS a Strategic |nvestment agents as a strategic investment. They elevate automation from an

experiment into a durable capability, one that extends across
functions, scales with the enterprise, and continues to deliver value
long after the initial deployment.

Al agents are no longer experiments or side projects.
When deployed thoughtfully, they represent a
foundational layer of enterprise infrastructure—one that
shapes customer experience, operational efficiency, and
long-term competitiveness. Viewing them as a platform,
rather than a point solution, is the difference between
short-term gains and sustained transformation.

Four pillars define this enterprise-grade approach:

Trusted Partner

Success with Al agents depends as much on the partner you
choose as the technology itself. The right partner doesn't just
deliver software or services — they take the time to understand
your business, align with your objectives, and guide you through
the journey. They combine best-in-class platform capabilities with
the expertise to help you move faster, avoid common pitfalls, and
future-proof your investment. With this alignment, Al agents aren’t
just deployed — they’re deployed where they create lasting impact.

Agentic Architecture

Sophisticated agents demand more than natural conversation—
they need deep system integration and guardrails that make them
reliable in production. A well-designed architecture bridges
conversational Al with backend processes, enabling agents to
complete tasks end-to-end while protecting against failure modes.
This is where Al agents stop being demos and start becoming
operational assets.

Al Agent Trust

Without trust, automation cannot scale. Rigorous quality assurance,
real-world simulations, and compliance checks are essential to
guarantee performance under real conditions. Transparent audit
trails and guardrail adherence give leaders confidence that agents
will behave predictably, even in edge cases, and meet the
standards required for regulated industries.

Continuous Learning Loop

Al agents are not static. Every interaction—successful or failed—
creates an opportunity to refine performance. A closed feedback
loop that blends human oversight with machine learning ensures
agents improve over time, adapt to new customer behaviors, and
expand their coverage responsibly. This cycle turns automation into
a compounding advantage.

13



